CHAPTER TEN

GEOMETRY

The diagram is triangle ABC with the side AC produced to D. Find.

- (i) the value of x.
- (ii) the angle ACB.

N/B: The angles mark $(x + 17^0)$ and $(2x + 7)^0$ are the interior opposite angles, while the one marked $(9x)^0$ is the exterior angle.

Soln:

(i) Since the sum of the interior opposite angles = the exterior angle,

$$=> (x + 17)^{0} + (2x + 7) = 9x,$$
$$=>3x + 24 = 9x, => 24 = 9x - 3x$$
$$=> 6x = 24, => x = \frac{24}{6} = 4.$$

(ii) The value of the angle marked $x + 17 = 4 + 17 = 21^{0}$ and that marked $2x + 7 = 2(4) + 7 = 8 + 7 = 15^{0}$.

Let <ACB = y^0 .Since the sum of angles within a triangle = 180^0 , then 15 + 21 + y

$$= 180^{\circ}, => 36^{\circ} + y = 180$$
$$=> y = 180 - 36^{\circ} = 144^{\circ}.$$

(Q2) Find the value of x and w in the next diagram in which |AB| = |BC|.

Not drawn to scale.

N/B: Since the two equal sides or lines i.e AB and BC meet the line AC at the points A and C, then the angles at A and C must be equal

Soln:

Since $|AB| = |BC| = \langle ACB = \langle CAB = x.$

i.e.

Since the sum of the interior opposite angles = the exterior angle, then x + x = 134,

$$=>2x = 134 => x = \frac{134}{2} = 67^{0}.$$

Also w and x are angles on a straight line and since the sum of the angles on a straight line = 180^{0} , => w + x = 180, => w + 67 = 180, => w = 180 - 67 = 113⁰.

(Q3) Determine the value of x for this given diagram.

Since the sum of angles within a circle = 360, then x + 10 + 4x - 30 + 2x + 30 = 360,

$$=> x + 4x + 2x = 360 - 10 + 30 - 30$$

$$=>7x = 350, => x = \frac{350}{7} = 50^{\circ}.$$

In the diagram |AB| = |AC|, angle $ADC = 30^{\circ}$ and angle $ACD = 7x - 25^{\circ}$. Find

D

- (i) the value of x.
- (ii) angle DAC
- (iii) angle BAD.

Since the two equal lines i.e AB and AC meet the line BC at the points B and C, then the angles at B and C are equal.,

Soln:

(i) Since
$$|AB| = |AC|$$
,

then <ABC = < ACB.

Let angle $\langle ABC = y$ and $\langle ACB = y$

i.e.

Now consider triangle ABC.

Considering <ABC and since the sum of angles within a triangle = 180° , then 50 + y + y = 180= > 50 + 2y = 180° , => 2y = 180 - 50, => 2y = $130 => y = \frac{130}{2} = 65^{\circ}$.

Also for the same triangle, the sum of the interior opposite angles = the exterior angle which is 7x - 25,

=> 50 + y = 7x - 25, => 50 + 65 = 7x - 25

$$=>115 = 7x - 25, => 115 + 25 = 7x,$$

$$=>140 = 7x => x = \frac{140}{7} = 20^{\circ}$$

(ii) Since $x = 20^{\circ}$, then the angle marked $7x - 25 = 7(20) - 25 = 140 - 25 = 115^{\circ}$.

Let <DAC = m and consider \triangle ACD.

Since the sum of angles within a triangle = 180° , then m + 115 + 30 = 180,

$$=> m + 145 = 180 => m = 180 - 145 = 35^{\circ}.$$

 \therefore <DAC = 35⁰.

(ii)
$$\langle BAD = 50^{\circ} + m = 50^{\circ} + 35^{\circ} = 85^{\circ}$$
.